Input - Output Stability of Recurrent Neural

نویسنده

  • Jochen J. Steil
چکیده

We present a frequency domain analysis of additive recurrent neural networks based on the pas-sivity approach to input-output stability. We apply graphical Circle Criteria for the case of normal weight matrices which result in eeectively computable stability bounds, including systems with delay. Approximation techniques yield further gen-eralisation to arbitrary matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Input-Output Stability of Recurrent Neural Networks with Time-Varying Parameters

We provide input-output stability conditions for additive recurrent neural networks regarding them as dynamical operators between their input and output function spaces. The stability analysis is based on methods from non-linear feedback system theory and includes the case of time-varying weights, for instance introduced by on-line adaptation. The results assure that there are regions in weight...

متن کامل

Local input-output stability of recurrent networks with time-varying weights

We present local conditions for input-output stability of recurrent neural networks with time-varying parameters introduced for instance by noise or on-line adaptation. The conditions guarantee that a network implements a proper mapping from time-varying input to time-varying output functions using a local equilibrium as point of operation. We show how to calculate necessary bounds on the allow...

متن کامل

Recurrent Learning of Input-output Stable Behaviour in Function Space: a Case Study with the Roessler Attractor

We analyse the stability of the input-output behaviour of a recurrent network. It is trained to implement an operator implicitly given by the chaotic dynamics of the Roessler attractor. Two of the attractors coordinate functions are used as network input and the third defines the reference output. Using recently developed new methods we show that the trained network is input-output stable and c...

متن کامل

Nl Q Theory: Checking and Imposing Stability of Recurrent Neural Networks for Nonlinear Modelling

It is known that many discrete time recurrent neural networks, such as e.g. neural state space models, multilayer Hoppeld networks and locally recurrent globally feedforward neural networks, can be represented as NL q systems. Suucient conditions for global asymptotic stability and input/output stability of NL q systems are available, including three types of criteria: diagonal scaling and crit...

متن کامل

Monotonic Recurrent Bounded Derivative Neural Network

Neural networks applied in control loops and safety-critical domains have to meet hard requirements. First of all, a small approximation error is required, then, the smoothness and the monotonicity of selected input-output relations have to be taken into account and finally, for some processes, time dependencies in time series should be induced into the model. If not then the stability of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998